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Abstract: Flow Shop Scheduling has been addressed by many methods of the deterministic nature which proved obsoleteness due to
solution period length and hardness with respect to problem size. Evolutionary computation seems to be a proper candidate to surpass
this obstacle as it can handle the size but on the expense of determination of optimal solutions to some extent. This paper is intended
to formulate the problem according to two Evolutionary Computational methods, namely, Vibrational Potential Method (VPM) and
Genetic Algorithms (GA). Solutions of some case studies are considered through which evaluation of the effectiveness of both

methods is sought and discussed.

1. Introduction

Flow Shop Scheduling is a manufacturing problem
that has been treated by many methods for solution.
The problem's big picture is the fact the tasks are to
pass over all machines in the same sequence
(preferably optimal) from which originates the
relative simplicity of the problem as compared to the
Job Shop Scheduling.

Eventually, the nature of the solution depends largely
on the size of the problem in terms of machines and
tasks. Deterministic methods of the like of Branch
and Bound [1, 2] can successtully handle small-
sized problems otherwise difficulty associated with
large solution time arises. This calls for methods of
the like of Neural Networks, Genetic Algorithms
(GA), and Vibrational Potential Method (VPM). In
fact, although the aforementioned methods might not
provide absolute optimal solutions, especially for
large sizes, they tend to offer near-optimal solutions
with a satisfactory span of computation time.

2. Genetic Algorithms (GA)

Being an indirect method corresponding to its
involvement with the given problem, GA requires
special encoding and decoding for the physical
problem. The usual approach is to represent the
problem space using a binary configuration of the
space entities (chromosomes).

In the case of the problem addressed herein, many
have attempted a similar binary representation that
would only add to the complexity of the problem in
terms of information handling. On the other hand,
some used the direct non-binary representation of the
chromosomes which simplified things but added to
the complexity of the GA engine.

Goldberg [3] tackled the problem as well as others
[4] using this non-binary representation and treated
the special case that would arise when attempting to
effect crossovers on the chromosomes. The
uniqueness of the individual gene within the
chromosome implied that a special process should be
followed to ensure the non-repetitiveness of genes.
This gave rise to Partially Matched Crossover
(PMX) which was first used to solve the blind
Traveling Salesman Problem (TSP) [3].

Some earlier works inhibited crossings between non-
homologous strings to avoid genes repetitiveness but
that was obviously "unnatural" and limited the
abilities of GA. Later, many approaches were
adopted to avoid this repetitiveness and several
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chunking methods were attempted (single point, two
points, ..) [4].

In this work, the crossover point is single and
repetition of genes is avoided by a double sweep for
the genes of the swapped sub-strings. In fact, since
crossover is affected between two strings, one can
anticipate the worst scenario in that the swapped sub-
strings would both contain identical genes. The
problem arises when these identical genes are not at
the same position with respect to the corresponding
sub-string. In that case, individual genes of the sub-
strings complementary to the swapped sub-strings in
each parent are compared to each swapped gene of
the corresponding parent: if a match occurs, a pointer
is set in the swapped field matching gene flagging
the corresponding gene in the other parent.
Afterwards, a second comparative scan is affected on
the swapped sub-string of the original parent for the
value of the gene pointed in the other. If a match
occurs then the gene corresponding to it in the other
parent is chosen, else, the originally pointed out gene
is adopted. This special crossover, along with an
appropriate objective function, are added to a simple
GA engine to solve for Flow Shop Problems.

3. Vibrational Potential Field

VPM is an evolutionary computational method
differing from GA in that the solution space is
integrated into a single field of interaction among
individual fields representing the solution entities
rather than being a competitive sample of that space

[5].

Each task and machine are attributed with a potential
field  characterizing  the  transfer  between
combinatorial (physical) and field (computational)
media. A common wave function differentiates
between the identities of individual fields and, under
its guidance, these fields interact among each other
producing attraction and repulsion (the amount of
which measured by energy level of the field) towards
the final state of stability which is the optimal.

4. Objective Problems

Due to space and time limitation, only two
representative problems will be dealt with herein.
The first is a well-determined, real-life application
for a simple line of three machines where six tasks
are to be sequentially fed into the line [2] and the
solution is sought for the optimal time which is
characteristic of the optimal solution(s). The second
problem is an artificially-generated one where twenty



five tasks are assigned to fifteen machines at random
make spans.

5. Results

First using GA, both problems showed characteristic
behavior in their solution.

The first one converged at once due to the fact that,
being a realistic example, it had many optional
solutions as the individual make span of every part
on a single machine is relative to the machine
function: in our case, the second machine had shorter
spans than the other two which gave rise to multiple
solutions.

The second problem was pretty elusive to GA as it
imposed a highly competitive space due to the
randomness of make spans where it becomes hard to
single out the optimal solution less one tends to
include the total space of population, a process futile
in itself as this space is of the order of 1023. This
tendency is outlined by the fact that, as population
size grows, more optimal solutions arise (figs 1 and
2) and, moreover, matching sequences at the
beginning and end of the sub-optimal strings
increase correspondingly and are propagated in that
manner into higher sizes and the similarity is
increased. '

By examining fig. 1, one sees clearly the effect of
varying parameters of GA where the optimal
combination is assigned to using the elite method
which propagates the best string onto generations, a
pressure factor of unity, and 0.8 crossover ratio.
Other crossover ratios are quite redundant and higher
pressure ratios decrease optimality.

In fig. 2, as mentioned before, optimality is
emphasized in terms of population size. Notice how
the improvement in the solution slows down towards
larger population sizes, a phenomenon suggesting
closeness to optimality.

As for VPM, it converged almost instantaneously for
the first problem (P1 in fig. 3) but for the other one it
behaved around the solution such that, for lower
damping factors and speed increments and higher
position increments, performance is improved. This
means that slower and thorough search will catch on
to local minima better than otherwise. The P2 series
in fig. 3 depicts that in the corresponding sequence
of the three parameters: damping factor, speed, and
position increments.

6. Conclusions

GA has shown better results than VPM on large-
scale problems but on the expense of larger
execution time. However, VPM has yielded its best
results within 5% of those of GA with much less
execution time.

Further elaboration on VPM would help tune up its
parameters to better suit the Floor Shop Problem.
Until then, GA offers a less demanding tool to solve
it for valid sub-optimal solutions. Both methods
represent a better alternative to deterministic ones.
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A Fig.2 GA: effect of varying population size
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Fig.4 VPM: P1 (top); P2,triple parametric solution runs
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