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A Study on the Compose Method by Composite Neuroevolution on Cat Landing Problem
Hokkaido University OXU ZHUORAN, MASAHITO YAMAMOTO, MASASHI FURUKAWA
Abstract

Neuroevolution algorithms are usually used to optimize one Artificial Neural Network. Composite Neuroevolution
optimizes multiple Artificial Neural Networks which are integrated into a complete structure in a pre-defined way
which called compose method. Composite Neuroevolution contributes to achieve emergence behavior. This paper
compares three types of structures on the cat landing problem. Their advantages and disadvantages are discussed.
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1 Introduction

Neuroevolution algorithms are usually used to
optimize one Artificial Neural Network(ANN). In
composed behavior methodology, multiple ANNs are
optimized one after another and integrated to a
complete structure. This method is done with human
interference which guarantees that each ANN has
explicit function. This method helps to solve a given
task where the optimization falls into the local minimal
easily[1]. However, the human interference makes this
method inconvenient.

Composite Neuroevolution optimizes multiple
ANNs simultaneously without human interference. It
has the same effect as composed behavior
methodology, so it contributes to achieve emergence
behavior. This paper compares three types of compose
methods, also refered as structures in this paper, on cat
landing problem. Their advantages and disadvantages
are discussed.

2 Cat Landing Problem

The cat has ability to rotate itself to face the
ground in the air when landing. We construct a virtual
cat robot by Physics Modeling, and optimize its
controller to perform this motion. All simulations are
done in PhysX.

The cat is composed of a sphere and seven
cuboids which represent the head, the tail, four legs,
the front part of the body and the back part of the body
which are respectively connected by seven joints.
Actuators are placed on joints at the spine and legs.
Their moving range is £60 degree on two axes.Sensors
are the direction and angular velocity of bodies and
legs of cat. The controller outputs angular velocity of
two axes to each actuator. Fig.1 shows our model.
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Fig.2 Sub-tasks
The task includes 5 different sub-tasks with different

initial states: the cat is rotated 90, 135, 180, 225, 270
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degree. Fig.2 shows sub-tasks and their desired
motions. The 180 ° sub-task has two acceptable
motion. Each sub-task simulates for 100 steps. The cat
is placed at 3m height, and the gravity is set to 0. The
fitness function for ‘i’ sub-task is shown by Eq.1.
f; =2-min(MD, (k)
MD, (k) = max(D, ( front,k),D, (back,k)) Eq 1

D;(part, k) is the distance of y-direction between
denoted part and gravity in step k. The total fitness is
F = min (f;). The optimization falls into local minimal
easily because it is much easier to find a motion, which
only has the ability to rotate the cat from one side no
matter what the initial state is, than the desired motion.
3 Composite Neuroevolution

Composite Neuroevolution optimizes a structure
which usually integrated of multiple ANNs. ANNs are
coded one by one in a linear gene and optimized by a
Neuroevolution algorithm simultaneously. The ANNs
are integrated to a structure in a pre-defined way. To
emphasize its advantage, the selection and gene
operator are same as CNE[2]. However, it is possible
to use other Neuroevolution algorithm like
CMA-ES[3], NEAT[4] or ESP [5]. There are lots of
possible structures. This paper compares three types of
structures: compose structure, compete structure and
cluster structure. All experiments are discussed based
on cat landing problem.
3.1 Compose Structure

The compose structure is shown in Fig.3. It has
two kinds of ANNs which have the same input, but
different output. Output of working ANN is the signal
for actuators. And output of compose ANN is a priority
vector: each priority value is related to a working ANN.
The working ANN with the highest priority value is
selected to transmit its output as the output of structure.
The output of structure is O = WOargmax(o;) -
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Fig.3 Compose Structure

3.2 Compete Structure

The compete structure is shown in Fig.4. Each
ANN has an additional output. The ANN with the
biggest additional output value is selected to transmit
its output as the output of structure. So the output of
structure is O = WOargmax(o;)-
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Fig.5 Compete Structure

3.3 Cluster Structure

The cluster structure is shown in Fig.5. In the
chromosome, a vector is coded with each ANN.
Vectors have same dimension as input of ANN. The
distance between vector and input is calculated in each
step. The ANN with the minimal distance value is
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selected to transmit its output as the output of structure.

So the output of structure is O = WOargmax(d;)-
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Fig.9 Cluster Structure

4 Experiments

We run CNE, NEAT, ESP, CMA-ES to optimize
one ANN as the controller of cat, and run Composite
Neuroevolution of three structures. The number of
population is 100 for CNE, NEAT, 300 for ESP, 10 for
CMA-ES, 50 for three Composite Neuroevolution
methods. Their fitness curves are shown in Fig. 6, 7.
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Fig.7 Fitness of three structures

CNE, ESP, NEAT, CMA-ES reach fitness around
1.2. So they fall into local minimal in this task. The
compose and cluster structure reach a fitness of around
2. The compete structure reaches a fitness around 1.5,
so it also falls into local minimal but better than CNE,
etc. All three structures overcome the local minimal
problem in varying degrees without human
interference. So they contribute to achieve emergence
behavior.

The selected ANN of structures in each simulation
step shows the information distribution among ANNS,
as shown in Fig 8-10. The x-axis is the simulation step
and the y-axis is the selected ANN in denoted step. The
compose and compete structures change selected ANN

many times in each sub-task, so they tend to store the
related information among two working ANNs. The
cluster structure basically uses only one ANN in each
sub-task, so it stores related information in the same
ANN. So it is possible to distinguish which ANN has
which functif)n.
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Fig.10 Selected ANN of cluster structure

5 Conclusions

This paper proposes the concept of Composite
Neuroevolution and compares three structures: the
compose, compete and cluster structure. All three
structures contribute to achieve emergence behavior.
Compose and cluster structures show similar
performance in our experiment. But compete structure
is worse than two others. The cluster structure can
store related information in the same ANN. This
feature is helpful to identify the function of each ANN.
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