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Abstract 

Wave-dissipating blocks are stacked on a breakwater as armor structures to protect ports and harbors from the erosion of severe waves. 

Regular supplementary work is periodically required to maintain the height of the stacked blocks. This study developed a block stacking 

simulator where 3D block piling operation can be simulated to make the work more precise and economical. In the simulation, the piling 

poses of the blocks should be predicted as realistic as possible. Since the initial pose of a block before it drops has a crucial impact on the 

final simulation results of the block construction status, this study aims to find an optimal initialized pose of the block to fit it tightly to 

the existing surface of the stack of blocks. To this end, we developed a deep-learning-based optimal pose estimation method for wave-

dissipating blocks for the supplementary works. The estimation performance of the proposed method is introduced in this report. 

 

  

1. Introduction 

A wave-dissipation block is a concrete armor structure that 

prevents a breakwater from erosion caused by sea waves. Due to 

the long-term effect of waves, regular supplementary works are 

required to maintain the height of the stack of blocks, as shown in 

Fig. 1. To this end, constructors must estimate the number of new 

blocks to be supplemented as precisely as possible. Recently, 

UAV-photogrammetry (UAV) and multibeam echo-sounder 

(MBES) could capture the as-is surface of existing blocks as a 3D 

point cloud. However, accurately estimating the number of 

supplemented blocks is still challenging. 

To address the issue, so far, we developed a deep-learning-

based block pose recognition from 3D point clouds of an existing 

block surface measured from UAV and MBES[1], predicted the 

locations where new blocks should be inserted on the existing 

blocks and simulated the block stack-up behavior using a physics 

engine[2]. Since the initial pose of a block before it drops has a 

crucial impact on the final stack-up simulation results, this study 

aims to find an optimal initialized pose of an additional block to 

fit it tightly to the existing stack of blocks using a physics engine 

and image-based deep-learning method.  

 

2. Deep-learning-based estimation of the optimal initialized 

block pose to be inserted into existing stack of blocks 

2.1 Overview of the block pose estimation 

Our problem can be defined as follows: given an existing 

block stack as a background, find an optimal initialized pose of a 

new block so as to best fit to the existing stack. Fig.2 shows the 

processing flow of our optimal bock pose estimation. The 

estimation consists of (1) creation of background block stack 

scene, (2) finding an optimal block pose by generate-and-test 

search, (3) training the network for pose estimation, and (4) 

prediction of the optimal initialized block pose. 

2.2 Creation of background block stack scene 

We used a block CAD model and a physics engine to generate 

the block stacking scene, as in the previous 3D block stack-up 

simulation [2]. The size of the simulated stacking scene is about 

220m×20m. Then we create a large depth image 𝐼𝑑 
corresponding to this whole background scene. 

2.3 Finding an optimal block pose by generate-and-test 

Next, for generating training dataset, we should find a 

collection of the optimal initialized poses of an additional block 

so as to best fit to a given existing background block stack scene. 

To this end, the following generate-and-test search was adopted.  

First, as shown in Fig.3(a), we place a small 2D window 𝑤 

on the depth image 𝐼𝑑 representing the background scene. Then, 

we set the initial pose (𝐑, 𝐭) of a new on 𝑤 before it drops so 

that the position 𝐭 of the block coincide with the centroid 𝑐𝑤 of 

𝑤. To find the best fit pose to the background, we added a uniform 

random distribution 𝛿 ∈ [−0.5m, 0.5m] to each component of 𝐭. 
The initial orientation 𝐑 is also randomly perturbed.  

Finally, we drop a new block onto the background scene in 

the simulator, evaluate the following criteria for optimal block 

pose, and record the local depth image 𝐼𝑤 cut by 𝑤.  

Fig. 1 Block stacking work and the measured point clouds 

Fig. 2 The processing flow of our optimal bock pose estimation 

(a) Block pose generation 

Fig. 3 Block pose generation and samples of the 
recorded depth images 

(b) Recorded depth images 

𝐼𝑤 



2.4 Criteria for optimal block pose 

A reasonable initial block pose needs to satisfy the two conditions. 

 Stability: There should not be much lateral difference between 

the initialized pose and final stabilized pose. Therefore, the 

block's displacement in the horizontal plane should be less than 

0.2 m (about 10% of the block size). 

 Compactness: We want the inserted block to be as close as 

possible to existing background blocks. So the change in 

insufficient volume 𝑉 between a block surface and the target 

height shown in Fig.4 before and after the block insertion should 

be small enough. 

A window 𝑤 slides at a fixed small interval 𝑑 on the depth 

image 𝐼𝑑 . At every position of 𝑤, local depth image 𝐼𝑤 of the 

background scene is detected as 512 × 512  pixel image. 

Examples of 𝐼𝑤  are shwon in Fig.3(b). Then we drop a new 

block 1000 times at a randomly selected initial pose inside 𝐼𝑤 

and evaluate the change of the insufficient volume 𝑉 and block's 

horizontal displacement 𝑑  for each time. Finally, the pose that 

gives the smallest change in 𝑉 and satifies 𝑑<0.2m is taken as 

the expected optimal block pose, as shown in Fig. 4. 

2.5 Training the network for pose estimation 

In our prediction, given an input depth image 𝐼 , we need to 

establish the correspondence 𝑓 between the depth image and a 

reasonable pose as Eq.(1). 

(𝐑̅, 𝐭̅) = 𝑓(𝐼)                      (1) 

where 𝐼 is an input depth image, and 𝐑̅ and 𝐭 ̅ are the predicted 

rotation matrix and translation vector. To implement 𝑓 as a deep-

neural-network, we can use the classical feature extractor [3] or [4] 

followed by a several fully-connected layers, as show in Fig .5. 

To train it, we minimized the loss function,  

ℒ = ℒd + 𝛼ℒR                      (2) 

which combines displacement loss ℒd and rotation loss ℒR, and 

𝛼 denotes a balancing constant. As ℒd, we used the L2 loss as 

ℒd(𝐭̅, 𝐭) = ‖𝐭̅ − 𝐭‖2,                  (3) 

where 𝐭 is the ground truth translation vector. We took ℒR to be 

the “distance” between different pose defined by Eq.(4). 

ℒR(𝐑, 𝐑) = min
𝐆∈𝐺

cos−1 [
tr(𝐑(𝐑𝐆)T)−1

2
] ,          (4) 

Where, 𝐑 is the ground-truth rotation matrix, and 𝐺 is the group 

of proper symmetries that have no effect on the static state of the 

object. In our problem, 𝐑 is encoded by Euler angles. 

Our network accepts a depth image 𝐼𝑤  of size ℎ × 𝑏 × 1 . 

After extracting a 2048-dimensional global feature 𝑭 , the 

network is divided into two branches that each pass 𝑭 through a 

series of fully connected layers to obtain the predicted 𝐭 ̅ and 𝐑. 

 

3. Experiment and results 

We experimented with 800 depth images of 512×512 pixels on 

the training set and 200 images on the test set. The block type is 

assumed to be a clinger 6 tons. The displacement and rotation error 

are estimated by equation (3) and (4). We use an ADAM optimizer 

with initial learning rate 0.001, batch size 32. The network is 

trained for 700 epochs, which took about 24 hours. 

The prediction results from the various feature extractors are 

summarized in Table 1. Displacement errors of less than 0.5 m 

were achieved, but rotational errors were not sufficiently small. 

The reason for this may be that it is somewhat difficult to learn the 

posture from the depth image only. We should consider using 

quaternions to express the block posture instead of Euler angles. 

 

4 Summary 

  A deep-learning-based optimal pose estimation method for 

wave-dissipating blocks was proposed for the supplementary 

work planning, and its accuracy was verified. Although the 

displacement error is acceptable, the error in rotation should be 

more improved. The less information provided by the depth image 

may be a factor in poor learning. Also, we need to test more loss 

functions, as well as optimize the structure of the network. 
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Fig. 5 Overall structure for block pose estimation 

Tab. 1 Rotation and displacement errors in pose prediction. 

Fig. 4 Criteria for optimal block pose 


